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Abstract—This paper focuses on the circuit aspects required Input FPAA IC
for an on-chip, on-line SoC large-scale Field Programmable *
Analog Array (FPAA) learning for Vector-Matrix Multiplier X > uP
(VMM) + Winner-Take-All (WTA) classifier structure. We star t Learning
by describing the VMM+WTA classifier structure, and then show Classifier Prog
techniques required to handle device mismatch. The appro#c on (inj) @—Targets
is initially explained using a VMM+WTA as a two-input XOR FPAA A i
classifier structure. The approach requires considering tie entire
mixed-mode system, including the analog classifier data phat - Outputs
control circuitry for weight updates, and digital algorith m for  Targets Outputs é | o 3
computing digital weight updates and resulting FG programning Z >
during the algorithm. Input—

— Nulls

Fig. 1.  This paper focuses on the circuit and related impigai®n
|. FPAA ENABLED EMBEDDED, ON-CHIP LEARNING aspects required for an on-chip, on-line SoC large-sca FRrogrammable

This paper focuses on the SoC Iarge-scale Field Priylog Array (FPAA) learning algorithm utilizing a Vectdatrix Multiplier
+ Winner-Take-All (WTA) classifier structure. The approacbnsiders the

grammable Anal_og Arr_ay_ (FPAA_) hardware implementatio@wtire mixed-mode system from analog input to analog ouipatuding the
of a Vector-Matrix Multiplier + Winner-Take-All (WTA) [1] analog classifier data path, control circuitry for weightafes, and digital

Embedded Learning Classifier. The SoC FPAA IC [2] W g(_)rithm for computing digital weight updates and resgltFG programming
. - e . ._during the algorithm.

not designed or optimized for these classification, leaynin
or training tasks. The objective is to show the details of
this novel learning algorithm as well as classifier implemenmplementation of custom ICs, particularly analog syst@s, |
tation specifics. Unlike many machine learning applicagjontakes years of development, requiring a large investment in
the SoC FPAA approach enables sensor (e.g. microphorighe and highly specialized (and therefore expensive) lggop
through analog preprocessing (e.g. frequency decomepnXiti that easily can miss a potential commercial or researcletarg
and through the entire classifier and learning structure. ~ window opportunity. The heavy use of FPGAs, GPUs, and

The on-chip embedded machine learning algorithm (Fig. pyocessors in digital processing directly comes from this
uses analog circuits for the classifier data path, analogsnf reality for digital systems. FPAAs tend to be competitive in
tructure for sensing computed values into the micropramesenergy, area, frequency response [9] to custom deviceshand
(1P), and uP computation for identifying learning updatesmprovements from FPAAs to custom analog for a wide range
as well as Floating-Gate (FG) node updates. A VMM+WTAT applications is less than the improvements from FPGAs to
learning algorithm connected to the FPAA hardware [3] can lseistom digital. One expects a significant demand in embedded
trained one time or many times in the same IC infrastructur@achine learning systems, with all of the interest in leagni
The SoC FPAA IC was not designed or optimized for thisetworks [10], [11] and wearable devices. These oppoiamit
learning algorithm (or most algorithms), but the SoC FPAAill grow as FPAAs, and likely a family of FPAAs (e.g. [2],

IC could be configured for these operations. [12], [13]), become available.
A VMM+WTA classifier, like at least a two-layer Neu-
ral Network (NN) classifier, is universal approximator. The Il. VMM+WTA C IRCUIT CLASSIFIER STRUCTURE

VMM+WTA only requires a single layer [4]. The SoC FPAA This section gives an overview of the fundamental operation
has demonstrated hand-tuned VMM+WTA classifiers [1] fasf the VMM+WTA classifier structure and its SoC FPAA
simple command word recognition [2], speech detection [Siplementation. Figure 2 shows the measured operatioméor t
and biometric classification [6], [7]. The classificatiomu@es WTA circuit embedded in a VMM + WTA learning classifier
less than 28W of power, more than a factor of 10@0less structure. The weight matrix (12x8) is programmed to an
custom digital solutions (vs analog computation) [8]. identity matrix illustrating the operation of each WTA irtpu
SoC FPAA devices enables an increase of 2000compu- / output stage. This identity matrix is programmed (5nA) on
tational energy, and 100in area efficiency to comparable dig-top of a 10nA baseline current. This measurement uses gn-chi
ital computation, in a way that frees application enginéen® DACSs to enable each input (2.4V to 2.5V), in turn, to enable a
custom IC design, similar to FPGAs for digital applicationssingle current for each WTA input. The VMM is implemented

_ _ o in routing fabric as mentioned elsewhere (e.g. [2]); furthe
The authors are with the School of Electrical and Computegiri&ering

(ECE), Georgia Institute of Technology, Atlanta, GA 303Z0 USA (e- i_mplem_entation details will _be discussed in the followireg:s
mail:jennifer.hasler@ece.gatech.edu). tions. Figure 2 shows the winners (and non-winners) coettol
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Fig. 2. lllustration of the WTA functionality. The VMM is pgrammed to an identity matrix (programmed to 10nA) for thérerfunction. The DAC inputs
are ramped between 2.4V and 2.5V, each in sequence; the D#x@s from explicit 7-bit signal DACs in the FPAA infrastruotu The eight WTA outputs all
each win in sequence. The particular measured output wameitoves between a losing signal (between 2.2 and 2.5V) anuhring signal (below 1.2V).
The winning signal is limited by the voltage of the commonsb{&s) on the WTA line. \,, was held at GND for this experiment.

by the simple classifier structure. Given the input pattera, Vg [ Bus Routing 0 € Block_ Vo, [CABdevices
expect the outputs to win, in sequence, from the first output i o
A [ij

through the eighth output, corresponding to the experierlenf’ﬁs\it
measurements. The core circuit derives from Lazzaro’s WTA
circuit using FG pFET devices to enable programmable load” WTA Block
devices [14]. The FG pFETs are programmed independently, CAB Looa Routing v, JEL || ]
setting up threshold levels for each k-WTA stage. The ostput v, v,

V; e e @ V,

canwin based on their relative computed metrics. %F ol N
Figure 3 shows the particular VMM+WTA implementation N I e e eI ‘ You ¢ 90 o
for moderate size weight matrices in multiple SoC FPAA | | i‘ v, Nl
Computational Analog Blocks (CAB). Each compiled WTA “A” Bus Routing to C Block v L
stage, one per CAB, has one weight vector of the VMM ‘HHHHHH ' v { L e v,
operation as well as the resulting offset value. The resulti Vi wmsock | ey, o o
V| (oneCAB)

architecture just requires connecting a series of CABsthmye o 3 Prveical FPAA imol on of the VMM + WTA module i

; ; : : ; ig. 3. ysica implementation of the + module i
The FG values, 'nC|Ud|ng th? routing fabric welghts, arf?‘le FPAA. The VMM and the offset implementation are impletednas a
programmed through a known infrastructure on the SoC FPA#dw of FG switches connected to the input of the two nFET fsois (current

IC [15]. FG programming is shown to be better than 0.80%nveyer) configuration. The reduced routing, circuit, blutk representation
are all shown. This block, implemented in a single CAB (with tivo nFET

for target currents between SnA to /1R [15]' transistors), is replicated in multiple CABs, one CAB pecteautput. Future
implementations might consider fully integrated WTA stge the CABs.

I1l. CLASSIFIER MISMATCH: THE ROLE AND REMOVAL OF

MISMATCH FOR ON-CHIP LEARNING primary mismatch issue, typical of most current ICs, isoV

Device mismatch impact physical classifiers. Not everyghimmismatch. The front-end circuitry is typically programnzett

can be trained in a learning system; some absolute refesenmed separately [16]. Fortunately, within the SoC FPAAeg on
are almost always required. Mismatch will occur between-trahas roughly half a million analog FG parameters to account fo
sistors of the compiled WTA circuit, of the ADC element, anthese issues, parameters that often directly correct feskiold
resulting infrastructure elements. These approachesireeqwoltage (V) mismatch. Some existing techniques are already
other FG devices to remotely compensate for these effelats. possible, including system calibration with some mismatch
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Fig. 4. Threshold voltage mismatch between pFET transigtorthe indirect
FG switch element is one of the sources of error. This errorbeacalibrated
and incorporated in the programming infrastructure. Thange in Vg,
measured directly through oV, in the programming infrastructure, remains
roughly constant with the life of the chip. This is the primamoint of error
for the weights of VMM, stored as a charge on the floating naétey the first
iteration of data through the array, or if the learning cotapan is performed
off chip and downloaded to the device.
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AVT0,7 Fig. 6. The XOR classifier data is repeated for the VMM at thaéferent
locations, as seen by the three VPR routing views, and sing$aults. Multiple
locations show the calibration eliminates effects &%y due to indirect

a Vs programming. The location of the VMM weight matrix has étteffect on
the resulting computation due to initial measurements ¢hfibrate the \fo

Fig. 5. WTA (+VMM) circuit diagram for addressing mismatch the ~mismatch from indirect programming.

classifier structure. The Floating-Gate (FG) voltages deectlly account for

transistor mismatch for both high-gain sections.

M3

o7 = k7(Coy/Cr) because of the FG capacitive network.
The Vo mismatch is the dominant mismatch in a transistor.
map modeling [17], as well as initial built-in self testingg].  Typically, mismatch in W and L tends to be 0.5% or less, and
FPAA Mismatch occurs because of indirect FG progranq_apac!tor mismatch tends to be below 1% range. Mismatch ip
ming. The crossbar array of FG elements have two transist§gPacitances might have a small effect on the FG node, but in
per FG node (Fig. 4). The transistor to measure current in pf§OSe cases, one programs the FG charge, accounting fer thes
gramming is different than the transistor used in the affayp differences. When operating transistors with sub threshizls
identically drawn devices have a threshold voltageVg,) Currents, the percentage current changg dnaicn / oias) due
difference. This mismatch only needs to be characterizes off® threshold voltage mismatct Vo, is described for small
for critical devices, such as VMM FG routing devices; thes® moderate mismatch 4V, < Ur) as
values might be useful even during learning operations. Lviomateh o
Figure 5 shows the WTA section, including the VMM, to % =AY/l o1 4 T AVro (1)
. . . bias T
use FG devices to compensate for mismatch. This compen-
sation, by performing simple measurement of the switch@s have mismatch at 1%, it would requitsV;, <0.3mV,
used as VMM [17], enables results seen in Fig. 6, whehevels that are 1-2 orders of magnitude from realistic desjic
one gets identical responses for three circuits compiled particularly to scaled down devices. Most practical analog
three different locations (XOR classification applicajiofihe design tends to be sub threshold, near sub threshold, oinwith
FG voltages address 7y mismatch (Fig. 5) asV;,, — a gate voltage overdrive of 200-300mV. In all of these cases,
AVros, AVros, Vigt — AV, AVroz. Vo mismatch AVp, dominates the resulting device mismatch. Fortunately
from the gate term could be handled by the FG VMM pFETn these cases, FG capabilities can directly program owethe
devices or FG pFET load transistor, both typically routingrrors, and correcting these errors also reduces temperatu
elements. The resulting circuit gain betweep,Vto V; is g—; sensitivity due to device mismatch. These approaches also
The resulting gain between;\Mto the Out node is?t, where eliminates the need for any specialized layout techniques
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Fig. 7. VMM+WTA classifier illustrating the XOR function&ji from a 2-
input, 1 constant and 3 output classifier. The weights anestoamed into
programmed currents by assuming a weight of 1 normalize$né Zor this
problem; the normalization is optimally chosen for the ieegh frequency
response for the VMM, although a much higher value is used thi
illustration. The actual programmed currents are also shaveluding offset
currents required for all positive values. The third outguprogrammed to
the XOR output; the first two outputs are nulls in the overddissification
space.

to create the necessary matching beyond usual techniq
(transistors in the same orientation, same size device3, et

IV. CLASSIFICATION AND LEARNING EXAMPLE:
Two-INPUT XOR CLASSIFIER
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Fig. 8. lllustration of the input space for the XOR classtiiica including

the one desired (0) metric and the two null (X) metrics. Thisicture
determines the decision boundaries for the XOR classificatThe offsets
are also included for all three computed metrics. The lowguré shows the
transformation of the weight matrix and offset values frateal matrix values

to programmable current (positive) values. Weights arenatized to a value

of 25nA (W=1 — 25nA). Then offsets need to be positive, so we need to
add a constant offset to these offsets.

(2). For this implementation, the inputs are applied extyn
(Analog Discovery USB Device). The values in Fig. 8 were
obtained through learning the pattern from a labeled data
set [3]. One can train on the weights off-line and download
where useful for the application; the resulting adaptatiould
improve the results (after cluster step) as desired.

Figure 8 shows the two-dimensional classification space
(X1,X2), including the two boundary lines between the three
regions required for the XOR problem, as well as the reqiltin
XOR metric output and two null metric outputs. The XOR
computation has a single output, which makes for a con-
ceptually clear example. A single winning output is also the
exception for specifying the number and location of nulls in
the classification space. Often a single output requiresiseno
level null as well as another null, typically with a starting
position above the found null, adapting to the desired gyste
solution. The input signals are randomly chosen values from
a uniform distribution between 0 and 2. The initial solution
for the input clustering, (X, Xs) = (1,1), equivalent to taking
the moment inside the decision boundary region (solvedyeasi
ﬁé symmetry). The initial solution for the noise null would b

ake the minimum actual measured values with the system
noise applied; one would expect a value neat,k%) = (0,0).
The remaining null value would be selected at a higher point,
likely at the upper right corner, (XX2) = (2,2). In such a
fortunate case, one has arrived at the ideal solution and no

This section looks at the learning structure for a simplerrther adaptation is required.

classifier problem to illustrate the key concepts for cirayg-

eration. Figure 7 shows the two-input XOR classifier measure V- HARDWARE SPECIFICS FORON-CHIP LEARNING
output, repeatable (measured) for multiple locations a th ALGORITHM

SoC FPAA (Fig. 6). The WTA is programmed to have only This section will describe in detail the training algorithm
a single winner. Weight values between 0 and 2 are scaled a 12-input VMM and corresponding WTA FPAA learning

between bias currents of OnA and 50nA (weight =>125nA).

classifier, including measured data for this system. Theiea

Inputs between 0 and 2 are scaled between 2.4V (0) and h§ algorithm has two steps. First, a clustering stage,gugie
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LPF § outputs /Update| computation. The designer selects the particular curesrl |

20Ktz zohe N and source input voltage levels based on the system cantstrai
(a) (e.g. frequency response, energy). Initially the weights a

§ 5 WTArows (12 nputs, 1 CAB each) SRAM programmed below 10nA. This programming step accuracy

’ ata . . g . .
H 16-bit Memory is not significant (e.g. 50% accuracy) as long as it is below

Processor

10nA. The first iteration performed after initial progranmgi
will cluster the weights around the inputs.

12 BPF,
Amplitude
Detect, &

Input

i —| LPF block
end Inject (optional ot . 3 .
/\,/v A. First Iteration: Clustering Step
Campies Memory Mapped Register o] ] el The first iteration Iea_rning step _requires clustgring each
| Compute wUpdat)I§ input when that vector in the training sequence is selected
(b) (Fig. 10). Digitally, this just requires adding input sidsa

Fig. 9. VMM+WTA classifier Soc FPAA learning algorithm andpfemen- throthOUt the entire epoch as in (2) The Inputs (_)

tation. (a) Block diagram similar to the tool level desdopt (b) Structured 1 2-4‘/ — 2.5V), measured thergh a ramp ADC, give
block diagram illustrating the various required SoC FPAAnguitations; the 6bit accuracy for each summation (value between 0 and 1).

target signals and inputs from external and synced together The incoming data rate into the processor for acoustic &gna
(e.g. 10kHz) is 120KSPS. The input vector could be selected

first epoch of data, sets the initial weight and offset valuefor the entire sequence; 10kSPS for 116s 22° samples)

The starting weight values correlate to the resulting elest requires 26 bits to avoid worst case overflow.

positions. Second, a weight adaptation stage, sets theorletw The resulting target vector weight is the clustered value,

goes through a modified LMS stage, where the errors in the 1

training algorithm create shifts in the weights correspogd Wy =——— nyT (2)

to positions in the classification space. samples

The input is initially processed through bandpass filtefivided by the total number of times the clustered value
acoustic front-end processing, so the VMM input signals €omyppears. One must count the number of times each input is in
from the peak detector / LPF output (Fig. 1). The learning aRfe particular input class, a number between 0 aid After
classification structure demonstration used a datasein@bta summation, this value is converted to the programmed weight
by Lincoln laboratory to perform classification for tiNzero value. The weight value corresponds to current between 10nA
DARPA program. The datasets were processed through a cgAd 40nA, corresponding to measureg,Vof the program-
stant Q filter bank (from 1.6Hz to 5KHz), amplitude detectioming infrastructure is 1.3V to 1.4V, corresponding to 18-bi
and LPF (5Hz) structure, similar to Fig. 1. A FGOTA basedDC code between 5936 and 6560. The span between the two
LPF level shifts the signal between 2.4 and 2.5V. numbers is 625 values, slightly more than 9bit representati

The Soc FPAA implementation (Fig. 9a) includes th&hese 9-bit numbers of the summation are added to the lowest
feedforward computation, spectral decomposition andselascode (10nA, 1.3V, 5936). We just add the top 9-bits, 6-bits at
fication, as well as the basic training approach. The digitede signal level and 3-bits after the decimal, scaled by tofac
processor computes the weight values after the first epatth @i 8 (giving an integer code), because a constant weight gain
after the subsequent weight updates (Fig. 9a). The flow graghift does not affect the resulting operation. The top 18 bit
diagram is similar to the graphicalodeused to implement can be used with scaling. Computations for null startingn{soi
this function [2]. The hardware level implementation flooare kept within this same representation. Midpoints angenoi
plans (Fig. 9b) the compilation of the FPAA components (e.floors for starting null positions are computed on the preces
VMM) in the routing fabric, as well as digital memory forThe minimum of the unselected signals sets the noise level, a
the weight update computation. The input signals come fromull is positioned at that location.
multiplexed compiled ADC and the target signals (digital) FG Programming for adaptation only requires increasing
come directly into the processor. The weight updates caigin a current, an incremental hot-electron injection step (ms
from an 8-bit signal ADC, accumulated based on targdinescale), Decreasing a current, requiring erasing aimeent
signals for training stored in memory, and transformed the& pblock (or the entire IC), and reprogramming the IC, inclggin
resulting 14-bit target current (and therefore weightueal the desired value, by hot-electron injection (minutes)e Th

Figure 10 illustrates the detailed infrastructure used f@rogrammed currents for targets are within a factor of 4 ALOn
the on-chip classification and learning. The weight valués 40nA) of the lowest target current. Most signals should
scale between 10nA (0) and 40nA (1), and the inputs abe less than 40mV change in FG voltage on any adaptation
applied to the source voltage between 2.4V (0) and 2.8fep. Programming controls the injection process through a
(1). Only positive inputs and positive weights are requireeequence of measurements and pulses of fixed time, to hit the
for this VMM+WTA classification structure. Source voltage odesired target in as few pulses as possible without ovetistgpo
2.5V gives a current value near the programmed device levigle target. The pulses are modeled to for finding a drain pulse
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2 AN =y T earey e The clustering step finds a good initial condition when nelede

 subtract smallest value H P . .
Fig. 11. Processor Update Algorithm Description. Bold tsoxee contin- Programming a positive value into the FG array avoids the

uously kept registers throughout each epoch iteration, ragdlar boxes are N€ed to erase th_e _resylting array. FG ngrammin_g requires
generated registers by each epoch iteration. The weighdtepdre computed only hot-electron injection pulses, even when negaﬂvewal

from inputs, outputs, and target outputs throughout theclepthe other a1 sed. Training the weight values so every increment is a
operations occur at the end of an epoch. Computing the neghtgeis the

first step in computing the new offsets. Updates are progrednas increasing POSitive step is ess.ential to optimize prOQramming timiethd
values, requiring finding the smallest (typically largesgative number) value same offset value is added to all of the weights for the VMM

and subtracting it from all other values. + WTA classifier, the classification remains unchanged. For
a given set of weight updates, the smallest (likely negative

that would satisfy the solution of the resulting FG voltagg]] UPdate would be subtracted from each weight update, includ-
Each pulse will approach, but underestimate, the target. iNg those that are 0. Adding a constant to all the weights
The fixed-point processor based computation finds the négluires taking the most negative components of every weigh
significant error, then finds the resulting drain DAC code teghange for all weight vectors and use it as the baseline value
minimize the error. Drain voltage results in an exponenti&p), and all of the rest of the values are positive. Thergfore
factor for the \;, change per iteration, enabling the system tgvery weight value would either increase or remain the same,
improve on MSB as well as LSB through a compressed, line@fabling only a small hot-electron injection weight update
drain voltage. The measuring ADC (14-bit) is the componefdding this constant has no effect on the required offset
that requires accuracy to program the FG to a precise valG@mputation; the offsets are created from the actual weight
The theoretical limitation in accuracy comes from using a 1¥alues without constants applied. Weight changes oftenireq
bit ADC over the (roughly) 2V output voltage range, resigtin©ffset changes. One must store (digital) the actual weight
from 1V shift in FG voltage for the measured device. The LSEalue, and programmed value. The FG voltage update should
for the 14-bit ADC results in 61V in FG voltage accuracy, Pe significantly less than 10mV increase on any adaptation
resulting in 0.166% error for subthreshold currents. step when required at all. Few pulses per element are retjuire
per iteration, resulting in fast injection programming ¢isn
B. Later Iterations:Weight Adaptation Error Steps When the first iteratio_n reaches a regsonable startingisojut
the number of errors is a small fraction of the measurements.
Error metrics are computed in the processor as the data
arrives. The computation of the weight updates (Fig. 11
start from target and output signals through the 8-bit dign
ADC, accumulated as training selects, placed in memory, aftfnts
, transformed at the epoch end into the LSB changes forFigure 12 shows a comparative experimental measurement
the weight update (14-bit). Particular error metrics aginsd for the learning and training of these networks, one com-

. Twelve-input Classifier Learning Experimental Measure-
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Fig. 12. VMM+WTA classification of an acoustic dataset ceelatising a series of 1s data inputs, identifying the presefieesound source, whether it be
a generator, truck, or car. The classifier used a 12x3 VMMsdias followed by a 3 input, 3 output WTA. Both on-chip traigi (training and classification
on the SoC FPAA) and off-chip training (training and classifion numerically simulating SoC ODESs) using circuit misdere shown for comparison. Both
cases used the same on-chip frequency decomposition of éifapping bandpass (¢ filters, 12 amplitude detectors, and 12 low-pass filtersF(LFOHz
corner for spectrum representation). The data measursmeste offset to show the input signal, the WTA output (toptegc and one WTA null (third
vector) on the same plot. These two approaches yield sim@farts, and assuming a minimum time for any symbol of 40h&sctassifier correctly recognized
the results every time.

Classify | # of IC Metric | ADC | On-IC most classification algorithms, including hardware badad-c
Energy(J) | Bands | Process| Value ? Learn sification and training algorithms.
This Figure 12 shows the measured results of a single epoch
Work | 23uw 12 | 350nm | 1nJ N/A | Yes after training converged. The network was trained to identi
[43] | 16-2qu3 39 [ 130nm | 1220 | no no the presence of a sound source, whether it be a generator,
[44] 12443 8 130nm | 41.7.J no no truck, or car. One might use this representation to do furthe
[45] | ~ 11 15 | 40nm | 6.42.0 | no no classification, similar to identification of speech over seoi

The weights in Fig. 12 were the trained weights, one case
Fig. 13. Comparison of time-dependent signal detection dassification. for computer based simulation of this computation, and one
Every system is solving a similar problem, requiring a numftequency ~gse for on-chip Iearning of this computation. Two nulls (3_
decomposition bands. Acoustic classificatenlk classifications per second, . . . .

the closest number for continuous-time values, and theevaked to inter- input and 3-three output single WTA device) starting near th
polate where needed. The computation efficiency is comsistith general classification the noise level after the first epoch.

digital neural classification engines [46] . For a digitalplementation the Figure 12 shows measured results for a 12 input, 3 output
ADC is an essential part of the computation, although nduded with our VMM+WTA . he diff b lati
examples. The analog approach does not require this auilitstep. Our IC + comparing the difierence between emulating
includes on-chip learning, a feature not discussed in dthplementations.  this structure on-chip, as well as implementing this cfassi
off-chip. The off-chip computation was done in MATLAB,

experimentally modeling a subset of the analog functidms; t

pletely on-chip, and one where learning and classification WTA block was modeled as max(-) operation. Effectively,
performed off the FPAA for comparison. The input datasé@e results are similar, although the on-chip weights halre a
utilized a larger dataset composed of measured backgro@igonal offsets as expected from the training approacteseh
acoustic sounds and additional measurements of generatt¥® approaches yield similar results. The on-chip learning
idle cars, and trucks in this environment. The input dataset method required additional offsets to be applied as exdémnte
then composed of multiple 1s bursts of a generator, idle cite learning algorithm (no negative increments). Assunang
or truck on a 110s background; constructing the dataseisn tiinimum time for any symbol of 40ms, the classifier correctly
way produces a labeled dataset. All learning and classiitat recognized every input correctly with no errors.

occurred on this dataset passing through the same frequency Vi
decomposition stage: 12 overlapping bandpasg$ {iers, 12 '
amplitude detectors, and 12 low-pass filters (LPF, 50Hze&orn

for spectrum representation). The LPF function block aldd Computation required for VMM + WTA learning classifier
provides a DC shift for the VMM+WTA blocks. The approach The equivalent digital computation of this classifier, be-
shows a sensor-to-classified signal processing chainkeunltween the bandpass filter operation as well as the equivalent

DiscussioN ONVMM+WTA H ARDWARE
IMPLEMENTATION



12x8 VMM operating at a slow rate of 200SPS (for thisumber of synapses and inputs. One can get between 1-
problem) is roughly 4MMAC (/s). A Multiply ACcumulate 2 WTA stages per CAB, with 98 CABs on the IC. The
(MAC) unit operating near the energy efficiency wall [26Furrent implementation uses 16 inputs per CAB, although thi
will take roughly 1mW of power, consistent with the similamumber can be increased significantly by using @élock
processing and energy requirements of digital hearing aditches in addition to the local routing switches. Confahle
devices. The resulting memory access is likely a factor &fbric can allow for sparse patterns, which could potelytial
2 to 8 larger than this computation [27]. Implementation oimprove the computational complexity as in digital systems
an embedded processor, would require 250pJ/Op, typicalinfthis case, we look at fully connected local arrays to paevi
low power processors, would require roughly 4-8mW for thesme possible metric on this design. Conservatively (just 16
numeric computations. A typical ADC for this computationinputs per block), one could get roughly 200 WTA stages and
such as ADI7457[28], would require ImW at 3.3V supply t6000 synaptic (multiply + add) connections, operating from
transform the resulting acoustic signal to the digital pssor. bandwidths less than 1Hz to greater than 5MHz on this IC.
The required classifier levels (28V) are significantly less The VMM computation would be 30GMAC(/s) at 5SMHz in
than the required, dedicated digital computation; thesggn this case, requiring 3-6mW of power. One can extend these
requirements have been consistent across multiple acouapproaches with multiple devices.
applications [2], [6], [7] as well as for this computation.
The computation and resulting learning removes the need _ o o
for more complex GMM type hardware [21], [20], [22]’C. VMM + WTA learning classifier and other Classifiers
including those cases built as part of machine learning ap-The learning algorithm running an epoch of the dataset after
proaches [22]. This classifier system, compiled on this FPAAach change of weights. Earlier hardware algorithms have
is consistent with the x1000 improvement factor in compuilized this particular feature, including weight-petiation
tation (measured in MAC operations), is similar to systentgpe algorithms [29], [30], [31], [32], [33]. These apprbas
developed for VMMs (custom and compiled) [35], as well adiffer in using the signals to compute a weight update, gipic
other custom classifier networks [1], [20], [22]. of SOM and VQ type maps, to explicitly minimizing these
Figure 13 shows the comparison of this classifier witbrrors for each step, resulting in typically few iterations
digital classification equivalents for acoustic classifma These concepts superficially relate to earlier learning SOM
The resulting numbers are consistent with the 10@hergy hardware for 2 layer networks [34], although differentriag
efficiency of analog computing versus digital approachesnd network structure. These structures would differ frary o
including the original analog VMM computational efficiencyprogrammed networks (e.g. [36], [37], [38]) or continuows o
[23] compared to the digital energy efficiency wall [26]. Thdine learning [39], [40], [41], [42]
digital ICs are all custom implementations, where the apalo
values come from a configurable SoC FPAA IC [2]. Classifi-
cation energy is the energy required for a single classificat
step. The metric used is Classification Energy per frequency
band normalized to the IC Process (350nm CMOS). ScalingThis paper focused on the circuit aspects required for
for IC process is between linear to quadratic function; wa&n on-chip, on-line SoC FPAA learning for Vector-Matrix
utilize the conservative view of linear scaling improvermen Multiplier + Winner-Take-All (WTA) classifier structure.fie
energy efficiency for this table. VMM+WTA classifier FPAA implementation, including tech-
The power required during training for this implementatiofiques required to handle device mismatch, set the founda-
is higher due to using only the digital processor for digitdion for the learning efforts. Learning considerationsrtsiz
updates. The feedforward classifier chain is below the typy considering VMM+WTA as a two-input XOR classifier
ical 30uW of power required for classification. The digitalstructure. The approach requires considering the entixeani
computation requires 12 input samples every /A9@uring mode system, including the analog classifier data pathraiont
training, as well as operations based on these values. Asguntircuitry for weight updates, and digital algorithm for cem
roughly 10-one clock op per data sample, the computationdsting digital weight updates and resulting FG programming
a 1MOp/s calculation, requiring roughly 2mW of power fronfluring the algorithm. The approach was demonstrated on a
the uP [15]. These computations are not typically high-powelarger (12-input, 3-output) VMM+WTA classifier structure.
but higher than the feedforward classifier chain. Afteriémg The SoC FPAA IC was not designed or optimized for these
convergance, the processor can sleep (clockssetOHz). classification, learning, or training tasks.
Unlike many machine learning applications, the SoC
_ . ) . FPAA approach enables going from sensor (e.g. microphone),
B. Size of Classifier Implementations on SoC FPAA dev'cethrough the resulting analog preprocessing stages like fre
The section describes the maximum size of a neural netwaiency decomposition, as well as the entire classifier and
that can be compiled on a single SoC FPAA device. A netwol&arning structure. The on-chip embedded machine learning
could be built as a single layer network, or as a combinatfon algorithm requires using analog circuits for the classifier
layers; each VMM+WTA classifier is a universal approximatattata path, analog infrastructure for sensing computedesgalu
for its input / output space. The maximum problem sizeto the 4P computation, and resultingP computation for
depends on the number of WTA stages and then on tidentifying learning updates as well as FG node updates.

VIl. SUMMARY oN VMM+WTA H ARDWARE
IMPLEMENTATION



This work, and resulting algorithmic modeling [3], are jusk5] A. Natarajan and J. Hasler, “Modeling, simulation antblementation
the beginning of what is possible using these embedded on-
chip, FPAA compilable algorithms. The on-chip classificati ¢
and learning open opportunities for many areas in embedo‘ed
computing, particularly sensor-input (e.g. acoustic gtarmom-
eter, image, and RF). Additional hardware and aIgorithmE(Z:n
development enables wider use by applying these techniqies$ http:/iwww.analog.com/media/en/technical-docutation/data-

towards multiple focused classification problems.

(1]

(2]

(3]

(4
(5]
(6]
(7]

(8l
[0

[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]
REFERENCES
S. Ramakrishnan and J. Hasler, “Vector-Matrix Multipynd Winner-  [30]
Take-All as an Analog ClassifierJEEE TVLSI, vol. 22, no. 2, 2014,
pp. 353-361.
S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. AgilWunderlich, [31]

S. Nease, and S. Ramakrishnan, “A Programmable and Coriflgura
Mixed-Mode FPAA SoC,"IEEE VLSI, June 2016.

J. Hasler and S. Shah, “VMM + WTA Embedded Classifiers heay
Algorithm implementable on SoC FPAA devices][ETCAS in press,
2017.

W. Maass, “On the computational power of winner-takig-aNeural
Computatiopvol. 12, no. 11, pp. 25192535, 2000.

S. Shah and J. Hasler, “Low Power Speech Detector On A FPAZEE
ISCAS May 2017.

S. Shah, H. Treyin, O. T. Inan, and J. Hasler, “Reconfigleaanalog
classifier for knee-joint rehabilitationJEEE EMBC August 2016.

S. Shah, C. N. Teague, O. T. Inan, and J. Hasler, “A prdafemcept
classifier for acoustic signals from the knee joint on an FPAEEE
SensorsOctober 2016.

J. Hasler, “Opportunities in Physical Computing drivéry Analog
Realization,” ICRC, October 2016.

J. Hasler, S. Kim, and F. Adil, “Scaling Floating-Gatevixes Predicting
Behavior for Programmable and Configurable Circuits andteBys,”
JLPEA vol. 6, no. 13, 2016, pp. 1-19.

Nils J. Nilsson,Introduction to Machine Learnin@005.

A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic ModglitJsing
Deep Belief Networks,"I[EEE transactions on Audio, Speech, and Lanf39]
guage Processind/ol. 20, no. 1, 2012, pp. 14-22.

Rumberg, B.; Graham, D.W. “Reconfiguration Costs in lagaSensor
Interfaces for Wireless Sensing Applications.” IEEE MWSEAColum-
bus, OH, USA, 2013. pp. 321-324.

N. Guo, Y. Huang, T. Mai, S. Patil, C. Cao, M. Seok, S. Sethdhavan,
and Y. Tsividis, “Energy-efficient hybrid analog/digitalpgroximate
computation in continuous time,” IEEE JSSC, 2016, pp. 1-11.

J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Me®dnner-
take-all networks of O(N) complexity,” ildvances in Neural Informa-
tion Processing Systems Worgan Kaufmann, 1989.

S. Kim, J. Hasler, and S. George, “Integrated FloatBae Program-
ming Environment for System-Level ICsTransactions on VLSIvol.
24, no. 6, 2016. pp. 2244-2252.

S. Shah and J. Hasler, “Tuning of multiple parameterthvei BIST
system,”IEEE CAS | Vol. 64, No. 7, July 2017. pp. 1772-178

S. Kim, S. Shah, and J. Hasler, “Calibration of FloatlBgte SoC FPAA
System,” Transactions on VLSISeptember 2017.

T. Kohonen, “Learning vector quantizationM.A. Arbib, editor, The
Handbook of Brain Theory and Neural Networks, MIT Prek395, pp.
537-540.

T. Kohonen, “Self-Organization and Associative MewgjbrSpringer-
Verlag 1989.

S.-Y. Peng, P. Hasler, and D.V. Anderson, “An analoggpemnmable
multi-dimensional radial basis function based classifi6lEEE CAS |
Vol 54, No. 10, 2007. pp. 2148-2158.

P. Hasler, P. Smith, C. Duffy, C. Gordon, J. Dugger, andARderson,
“A floating-gate vector-quantizerMWCAS, vol. 1, 2002, pp. 196199.
J. Lu, S. Young, I. Arel, and J. Holleman, “A 1 TOPS/W Aogl
Deep Machine-Learning Engine With Floating-Gate Storage.i3um
CMOS,” IEEE Journal of Solid-State Circujt®l. 50, no. 1, 2015.

R. Chawla, A. Bandyopadhyay, V. Srinivasan, and P. éfasiA 531
nW/MHz, 128 x 32 current-mode programmable analog vectairim
multiplier with over two decades of linearityJEEE Custom Integrated
Circuits ConferenceOctober 2004, pp. 651-654.

A. Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik, “Suppd/ector
Clustering,” Journal of Machine Learning Researchl. 2, 2001. pp.
125-137.

[32]

(33]

[34]

[35]

(36]

[37]

(38]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

of circuit elements in an open-source tool set on the FPAWCSP,

vol. 91, no. 1, 2017. pp. 119-130.

B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scalamgrgy per
operation via an asynchronous pipelinédZEE TVLSI, vol. 21, no. 1,
pp. 147151, 2013.

J. Hasler, “Energy Constraints for Building Large-&caleuromorphic
Systems,"GOMAC, March 2016.

sheets/AD7457.pdf. Last visited August 31, 2017.

M. Jabri and B. Flower, “Weight Perturbation: An Optih#echitecture
and learning Technology for Analog VLSI Feedforward and iResnt
Multilayer Networks” IEEE Transactions on Neural Networksol. 3,
no. 1, 1992.

Philip H.W. Leong, and M. A. Jabri, “A Low-power trainebanalogue
neural network classifier chipJEEE Custom Integrated Circuits Con-
ference 1993, pp. 4.5.1 - 4.5.4.

K. Hirotsu, and M.A. Brooke, “An Analog Neural Networkh@® With
Random Weight Change Learning AlgorithmJCNN, vol. 3, Nagoya,
1993, pp. 3031-3034.

G. Cauwenberghs, “Neuromorphic Learning VLS| SysteAsurvey”
Neuromorphic systems engineerjrigpringer, 1998.

G. Cauwenberghs, “An analog VLSI recurrent neural meknlearning
a continue-time trajectoryJEEE Transactions on Neural Networksl.
7, no. 2, 1996, pp. 346-361

B. Zhang, M. Fu, H. Yan, and M. A. Jabri, “Handwritten MigRecog-
nition by Adaptive-Subspace Self-Organizing Map,” IEEERf$actions
on Neural Networks, Vol. 10, No. 4, JULY 1999 pp. 939-945.

C. Schlottmann, and P. Hasler, “A highly dense, low powero-
grammable analog vector-matrix multiplier: the FPAA implentation,”
IEEE Journal of Emerging CASol. 1, 2012, pp. 403-411.

J. C. Platt and T. P. Allen, “A neural network classifier the 12000
OCR Chip,” NIPS 1996. pp. 938-944.

J. Chen and T. Shibata, “A Neuron-MOS-Based VLS| Impemation
of Pulse-Coupled Neural Networks for Image Feature Geioerai EEE
CAS |, vol. 57, no. 6, 2010. pp. 1143-1153.

B. Larras, C. Lahuec, F. Seguin, and M. Arzel, “Ultravi-&nergy
Mixed-Signal IC Implementing Encoded Neural Network&€EE TCAS
I, vol. 63, no. 11, 2016. pp. 1974-1985.

P. Hasler and J. Dugger, “An analog floating-gate nodestgervised
learning,” IEEE TCAS | vol. 52, no. 5, 2005. pp. 834845.

J. H. Poikonen, M. Laiho, “A mixed-mode array computiaghitecture
for online dictionary learning,1JEEE ISCAS 2017.

M. A. Petrovici, et. al, “Pattern representation andagnition with
accelerated analog neuromorphic systenBEE ISCAS 2017.

N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanid. Sum-
islawska, and G. Indiveri, “A reconfigurable on-line leamispiking
neuromorphic processor comprising 256 neurons and 128Kps@s,”
Frontiers in Neurosciencé\pril 29, 2015.

J. Kwong, and A. P. Chandrakasan, “An Energy-EfficienvrBedical
Signal Processing Platform/EEE JSSCvol. 46, no. 7, July 2011. pp.
1742-1753.

K. H. Lee, and N. Verma, “A Low-Power Processor With Cgnfiable
Embedded Machine-Learning Accelerators for High-Orde Adaptive
Analysis of Medical-Sensor SignalslEEE JSSCvol. 48, no. 7, July
2013. pp. 1625-1637.

M. Shah, et. al, “A Fixed-Point Neural Network Architace for Speech
Applications on Resource Constrained Hardwarédurnal of Signal
Processing Systemblov. 25, 2016. pp. 1-15.

J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “A 6.67mW spaceding
ASIC enabling on-chip learning and inferencelEEE VLSI Circuits
2014, pp. 1-2.



