
SoC FPAA Hardware Implementation of a
VMM+WTA Embedded Learning Classifier

Sahil Shah and Jennifer Hasler,Senior Member, IEEE

Abstract—This paper focuses on the circuit aspects required
for an on-chip, on-line SoC large-scale Field Programmable
Analog Array (FPAA) learning for Vector-Matrix Multiplier
(VMM) + Winner-Take-All (WTA) classifier structure. We star t
by describing the VMM+WTA classifier structure, and then show
techniques required to handle device mismatch. The approach
is initially explained using a VMM+WTA as a two-input XOR
classifier structure. The approach requires considering the entire
mixed-mode system, including the analog classifier data path,
control circuitry for weight updates, and digital algorith m for
computing digital weight updates and resulting FG programming
during the algorithm.

I. FPAA ENABLED EMBEDDED, ON-CHIP LEARNING

This paper focuses on the SoC large-scale Field Pro-
grammable Analog Array (FPAA) hardware implementation
of a Vector-Matrix Multiplier + Winner-Take-All (WTA) [1]
Embedded Learning Classifier. The SoC FPAA IC [2] was
not designed or optimized for these classification, learning,
or training tasks. The objective is to show the details of
this novel learning algorithm as well as classifier implemen-
tation specifics. Unlike many machine learning applications,
the SoC FPAA approach enables sensor (e.g. microphone),
through analog preprocessing (e.g. frequency decomposition),
and through the entire classifier and learning structure.

The on-chip embedded machine learning algorithm (Fig. 1)
uses analog circuits for the classifier data path, analog infras-
tructure for sensing computed values into the microprocessor
(µP), andµP computation for identifying learning updates
as well as Floating-Gate (FG) node updates. A VMM+WTA
learning algorithm connected to the FPAA hardware [3] can be
trained one time or many times in the same IC infrastructure.
The SoC FPAA IC was not designed or optimized for this
learning algorithm (or most algorithms), but the SoC FPAA
IC could be configured for these operations.

A VMM+WTA classifier, like at least a two-layer Neu-
ral Network (NN) classifier, is universal approximator. The
VMM+WTA only requires a single layer [4]. The SoC FPAA
has demonstrated hand-tuned VMM+WTA classifiers [1] for
simple command word recognition [2], speech detection [5],
and biometric classification [6], [7]. The classification requires
less than 23µW of power, more than a factor of 1000× less
custom digital solutions (vs analog computation) [8].

SoC FPAA devices enables an increase of 1000× in compu-
tational energy, and 100× in area efficiency to comparable dig-
ital computation, in a way that frees application engineersfrom
custom IC design, similar to FPGAs for digital applications.
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Fig. 1. This paper focuses on the circuit and related implementation
aspects required for an on-chip, on-line SoC large-scale Field Programmable
Analog Array (FPAA) learning algorithm utilizing a Vector-Matrix Multiplier
+ Winner-Take-All (WTA) classifier structure. The approachconsiders the
entire mixed-mode system from analog input to analog output, including the
analog classifier data path, control circuitry for weight updates, and digital
algorithm for computing digital weight updates and resulting FG programming
during the algorithm.

Implementation of custom ICs, particularly analog system ICs,
takes years of development, requiring a large investment in
time and highly specialized (and therefore expensive) people,
that easily can miss a potential commercial or research target
window opportunity. The heavy use of FPGAs, GPUs, and
processors in digital processing directly comes from this
reality for digital systems. FPAAs tend to be competitive in
energy, area, frequency response [9] to custom devices, andthe
improvements from FPAAs to custom analog for a wide range
of applications is less than the improvements from FPGAs to
custom digital. One expects a significant demand in embedded
machine learning systems, with all of the interest in learning
networks [10], [11] and wearable devices. These opportunities
will grow as FPAAs, and likely a family of FPAAs (e.g. [2],
[12], [13]), become available.

II. VMM+WTA C IRCUIT CLASSIFIER STRUCTURE

This section gives an overview of the fundamental operation
of the VMM+WTA classifier structure and its SoC FPAA
implementation. Figure 2 shows the measured operation for the
WTA circuit embedded in a VMM + WTA learning classifier
structure. The weight matrix (12x8) is programmed to an
identity matrix illustrating the operation of each WTA input
/ output stage. This identity matrix is programmed (5nA) on
top of a 10nA baseline current. This measurement uses on-chip
DACs to enable each input (2.4V to 2.5V), in turn, to enable a
single current for each WTA input. The VMM is implemented
in routing fabric as mentioned elsewhere (e.g. [2]); further
implementation details will be discussed in the following sec-
tions. Figure 2 shows the winners (and non-winners) controlled
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Fig. 2. Illustration of the WTA functionality. The VMM is programmed to an identity matrix (programmed to 10nA) for the entire function. The DAC inputs
are ramped between 2.4V and 2.5V, each in sequence; the DACs come from explicit 7-bit signal DACs in the FPAA infrastructure. The eight WTA outputs all
each win in sequence. The particular measured output waveform moves between a losing signal (between 2.2 and 2.5V) and a winning signal (below 1.2V).
The winning signal is limited by the voltage of the common bias (Vs) on the WTA line. Va was held at GND for this experiment.

by the simple classifier structure. Given the input pattern,we
expect the outputs to win, in sequence, from the first output
through the eighth output, corresponding to the experimental
measurements. The core circuit derives from Lazzaro’s WTA
circuit using FG pFET devices to enable programmable load
devices [14]. The FG pFETs are programmed independently,
setting up threshold levels for each k-WTA stage. The outputs
canwin based on their relative computed metrics.

Figure 3 shows the particular VMM+WTA implementation
for moderate size weight matrices in multiple SoC FPAA
Computational Analog Blocks (CAB). Each compiled WTA
stage, one per CAB, has one weight vector of the VMM
operation as well as the resulting offset value. The resulting
architecture just requires connecting a series of CABs together.
The FG values, including the routing fabric weights, are
programmed through a known infrastructure on the SoC FPAA
IC [15]. FG programming is shown to be better than 0.80%
for target currents between 5nA to 10µA [15].

III. C LASSIFIER M ISMATCH: THE ROLE AND REMOVAL OF

M ISMATCH FOR ON-CHIP LEARNING

Device mismatch impact physical classifiers. Not everything
can be trained in a learning system; some absolute references
are almost always required. Mismatch will occur between tran-
sistors of the compiled WTA circuit, of the ADC element, and
resulting infrastructure elements. These approaches require
other FG devices to remotely compensate for these effects. The
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conveyer) configuration. The reduced routing, circuit, andblock representation
are all shown. This block, implemented in a single CAB (with its two nFET
transistors), is replicated in multiple CABs, one CAB per each output. Future
implementations might consider fully integrated WTA stages in the CABs.

primary mismatch issue, typical of most current ICs, is VT0

mismatch. The front-end circuitry is typically programmedand
tuned separately [16]. Fortunately, within the SoC FPAA, one
has roughly half a million analog FG parameters to account for
these issues, parameters that often directly correct for threshold
voltage (VT0) mismatch. Some existing techniques are already
possible, including system calibration with some mismatch
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map modeling [17], as well as initial built-in self testing [16].
FPAA Mismatch occurs because of indirect FG program-

ming. The crossbar array of FG elements have two transistors
per FG node (Fig. 4). The transistor to measure current in pro-
gramming is different than the transistor used in the array.Two
identically drawn devices have a threshold voltage (∆VT0)
difference. This mismatch only needs to be characterized once
for critical devices, such as VMM FG routing devices; these
values might be useful even during learning operations.

Figure 5 shows the WTA section, including the VMM, to
use FG devices to compensate for mismatch. This compen-
sation, by performing simple measurement of the switches
used as VMM [17], enables results seen in Fig. 6, where
one gets identical responses for three circuits compiled in
three different locations (XOR classification application). The
FG voltages address VT0 mismatch (Fig. 5) asVfg2 →

∆VT0,3,∆VT0,5, Vfg1 → ∆VT0,1,∆VT0,7. VT0 mismatch
from the gate term could be handled by the FG VMM pFET
devices or FG pFET load transistor, both typically routing
elements. The resulting circuit gain between Vfg1 to V1 is κ5

σ3

.
The resulting gain between V1 to the Out node isκ1

σ7
, where
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Fig. 6. The XOR classifier data is repeated for the VMM at threedifferent
locations, as seen by the three VPR routing views, and similar results. Multiple
locations show the calibration eliminates effects of∆VT0 due to indirect
programming. The location of the VMM weight matrix has little effect on
the resulting computation due to initial measurements thatcalibrate the VT0

mismatch from indirect programming.

σ7 = κ7(Cov/CT ) because of the FG capacitive network.
The VT0 mismatch is the dominant mismatch in a transistor.

Typically, mismatch in W and L tends to be 0.5% or less, and
capacitor mismatch tends to be below 1% range. Mismatch in
capacitances might have a small effect on the FG node, but in
those cases, one programs the FG charge, accounting for these
differences. When operating transistors with sub threshold bias
currents, the percentage current change (Imismatch / Ibias) due
to threshold voltage mismatch,∆VT0, is described for small
to moderate mismatch (∆VT0 < UT ) as

Imismatch

Ibias
= eκ∆V T0/UT

≈ 1 +
κ

UT
∆VT0 (1)

To have mismatch at 1%, it would require∆VT0 <0.3mV,
levels that are 1-2 orders of magnitude from realistic devices,
particularly to scaled down devices. Most practical analog
design tends to be sub threshold, near sub threshold, or within
a gate voltage overdrive of 200-300mV. In all of these cases,
∆VT0 dominates the resulting device mismatch. Fortunately
in these cases, FG capabilities can directly program out these
errors, and correcting these errors also reduces temperature
sensitivity due to device mismatch. These approaches also
eliminates the need for any specialized layout techniques
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to create the necessary matching beyond usual techniques
(transistors in the same orientation, same size devices, etc.).

IV. CLASSIFICATION AND LEARNING EXAMPLE :
TWO-INPUT XOR CLASSIFIER

This section looks at the learning structure for a simple
classifier problem to illustrate the key concepts for circuit op-
eration. Figure 7 shows the two-input XOR classifier measured
output, repeatable (measured) for multiple locations on the
SoC FPAA (Fig. 6). The WTA is programmed to have only
a single winner. Weight values between 0 and 2 are scaled
between bias currents of 0nA and 50nA (weight = 1→ 25nA).
Inputs between 0 and 2 are scaled between 2.4V (0) and 2.5
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Fig. 8. Illustration of the input space for the XOR classification including
the one desired (o) metric and the two null (X) metrics. This structure
determines the decision boundaries for the XOR classification. The offsets
are also included for all three computed metrics. The lower figure shows the
transformation of the weight matrix and offset values from ideal matrix values
to programmable current (positive) values. Weights are normalized to a value
of 25nA (W=1 → 25nA). Then offsets need to be positive, so we need to
add a constant offset to these offsets.

(2). For this implementation, the inputs are applied externally
(Analog Discovery USB Device). The values in Fig. 8 were
obtained through learning the pattern from a labeled data
set [3]. One can train on the weights off-line and download
where useful for the application; the resulting adaptationcould
improve the results (after cluster step) as desired.

Figure 8 shows the two-dimensional classification space
(X1,X2), including the two boundary lines between the three
regions required for the XOR problem, as well as the resulting
XOR metric output and two null metric outputs. The XOR
computation has a single output, which makes for a con-
ceptually clear example. A single winning output is also the
exception for specifying the number and location of nulls in
the classification space. Often a single output requires a noise
level null as well as another null, typically with a starting
position above the found null, adapting to the desired system
solution. The input signals are randomly chosen values from
a uniform distribution between 0 and 2. The initial solution
for the input clustering, (X1, X2) = (1,1), equivalent to taking
the moment inside the decision boundary region (solved easily
by symmetry). The initial solution for the noise null would be
to take the minimum actual measured values with the system
noise applied; one would expect a value near (X1,X2) = (0,0).
The remaining null value would be selected at a higher point,
likely at the upper right corner, (X1,X2) = (2,2). In such a
fortunate case, one has arrived at the ideal solution and no
further adaptation is required.

V. HARDWARE SPECIFICS FORON-CHIP LEARNING

ALGORITHM

This section will describe in detail the training algorithm
for a 12-input VMM and corresponding WTA FPAA learning
classifier, including measured data for this system. The learn-
ing algorithm has two steps. First, a clustering stage, using the
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first epoch of data, sets the initial weight and offset values.
The starting weight values correlate to the resulting clustered
positions. Second, a weight adaptation stage, sets the network
goes through a modified LMS stage, where the errors in the
training algorithm create shifts in the weights corresponding
to positions in the classification space.

The input is initially processed through bandpass filter
acoustic front-end processing, so the VMM input signals come
from the peak detector / LPF output (Fig. 1). The learning and
classification structure demonstration used a dataset obtained
by Lincoln laboratory to perform classification for theNzero
DARPA program. The datasets were processed through a con-
stant Q filter bank (from 1.6Hz to 5KHz), amplitude detection,
and LPF (5Hz) structure, similar to Fig. 1. A FGOTA based
LPF level shifts the signal between 2.4 and 2.5V.

The Soc FPAA implementation (Fig. 9a) includes the
feedforward computation, spectral decomposition and classi-
fication, as well as the basic training approach. The digital
processor computes the weight values after the first epoch and
after the subsequent weight updates (Fig. 9a). The flow graph
diagram is similar to the graphicalcode used to implement
this function [2]. The hardware level implementation floor
plans (Fig. 9b) the compilation of the FPAA components (e.g.
VMM) in the routing fabric, as well as digital memory for
the weight update computation. The input signals come from
multiplexed compiled ADC and the target signals (digital)
come directly into the processor. The weight updates originate
from an 8-bit signal ADC, accumulated based on target
signals for training stored in memory, and transformed intothe
resulting 14-bit target current (and therefore weight) value.

Figure 10 illustrates the detailed infrastructure used for
the on-chip classification and learning. The weight values
scale between 10nA (0) and 40nA (1), and the inputs are
applied to the source voltage between 2.4V (0) and 2.5V
(1). Only positive inputs and positive weights are requires
for this VMM+WTA classification structure. Source voltage of
2.5V gives a current value near the programmed device level.

Adding a constant to the same inputs of each weight vector
results in a common-mode term to each WTA [3]; common
term to all WTA inputs is effectively eliminated from the
computation. The designer selects the particular current level
and source input voltage levels based on the system constraints
(e.g. frequency response, energy). Initially the weights are
programmed below 10nA. This programming step accuracy
is not significant (e.g. 50% accuracy) as long as it is below
10nA. The first iteration performed after initial programming
will cluster the weights around the inputs.

A. First Iteration: Clustering Step

The first iteration learning step requires clustering each
input when that vector in the training sequence is selected
(Fig. 10). Digitally, this just requires adding input signals
throughout the entire epoch as in (2). The inputs (0 →

1, 2.4V → 2.5V ), measured through a ramp ADC, give≈
6bit accuracy for each summation (value between 0 and 1).
The incoming data rate into the processor for acoustic signals
(e.g. 10kHz) is 120KSPS. The input vector could be selected
for the entire sequence; 10kSPS for 110s (≈ 220 samples)
requires 26 bits to avoid worst case overflow.

The resulting target vector weight is the clustered value,

W1 =
1

samples

∑

k

xŷT (2)

divided by the total number of times the clustered value
appears. One must count the number of times each input is in
the particular input class, a number between 0 and 220. After
summation, this value is converted to the programmed weight
value. The weight value corresponds to current between 10nA
and 40nA, corresponding to measured Vout of the program-
ming infrastructure is 1.3V to 1.4V, corresponding to 14-bit
ADC code between 5936 and 6560. The span between the two
numbers is 625 values, slightly more than 9bit representation.
These 9-bit numbers of the summation are added to the lowest
code (10nA, 1.3V, 5936). We just add the top 9-bits, 6-bits at
the signal level and 3-bits after the decimal, scaled by a factor
of 8 (giving an integer code), because a constant weight gain
shift does not affect the resulting operation. The top 10 bits
can be used with scaling. Computations for null starting points
are kept within this same representation. Midpoints and noise
floors for starting null positions are computed on the processor.
The minimum of the unselected signals sets the noise level, a
null is positioned at that location.

FG Programming for adaptation only requires increasing
a current, an incremental hot-electron injection step (ms
timescale), Decreasing a current, requiring erasing an entire
block (or the entire IC), and reprogramming the IC, including
the desired value, by hot-electron injection (minutes). The
programmed currents for targets are within a factor of 4 (10nA
to 40nA) of the lowest target current. Most signals should
be less than 40mV change in FG voltage on any adaptation
step. Programming controls the injection process through a
sequence of measurements and pulses of fixed time, to hit the
desired target in as few pulses as possible without overshooting
the target. The pulses are modeled to for finding a drain pulse
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that would satisfy the solution of the resulting FG voltage [15].
Each pulse will approach, but underestimate, the target.

The fixed-point processor based computation finds the next
significant error, then finds the resulting drain DAC code to
minimize the error. Drain voltage results in an exponential
factor for the Vfg change per iteration, enabling the system to
improve on MSB as well as LSB through a compressed, linear
drain voltage. The measuring ADC (14-bit) is the component
that requires accuracy to program the FG to a precise value.
The theoretical limitation in accuracy comes from using a 14-
bit ADC over the (roughly) 2V output voltage range, resulting
from 1V shift in FG voltage for the measured device. The LSB
for the 14-bit ADC results in 61µV in FG voltage accuracy,
resulting in 0.166% error for subthreshold currents.

B. Later Iterations:Weight Adaptation Error Steps

Error metrics are computed in the processor as the data
arrives. The computation of the weight updates (Fig. 11)
start from target and output signals through the 8-bit signal
ADC, accumulated as training selects, placed in memory, and
, transformed at the epoch end into the LSB changes for
the weight update (14-bit). Particular error metrics are signed

quantities; the signed errors typically cancel some samples.
The total number of potential samples normalizes averages
the error metric. The weight updates are again programmed
into VMM FG devices, in batch, after the computation of the
epoch update metrics. This adaptation could be used after any
initial programmed initial condition of the weights. One might
adapt to slight difference from physical implementation to
physical implementation if an off-line solution was developed.
The clustering step finds a good initial condition when needed.

Programming a positive value into the FG array avoids the
need to erase the resulting array. FG Programming requires
only hot-electron injection pulses, even when negative values
are used. Training the weight values so every increment is a
positive step is essential to optimize programming times. If the
same offset value is added to all of the weights for the VMM
+ WTA classifier, the classification remains unchanged. For
a given set of weight updates, the smallest (likely negative)
update would be subtracted from each weight update, includ-
ing those that are 0. Adding a constant to all the weights
requires taking the most negative components of every weight
change for all weight vectors and use it as the baseline value
(0), and all of the rest of the values are positive. Therefore,
every weight value would either increase or remain the same,
enabling only a small hot-electron injection weight update.
Adding this constant has no effect on the required offset
computation; the offsets are created from the actual weight
values without constants applied. Weight changes often require
offset changes. One must store (digital) the actual weight
value, and programmed value. The FG voltage update should
be significantly less than 10mV increase on any adaptation
step when required at all. Few pulses per element are required
per iteration, resulting in fast injection programming times.
When the first iteration reaches a reasonable starting solution,
the number of errors is a small fraction of the measurements.

C. Twelve-input Classifier Learning Experimental Measure-
ments

Figure 12 shows a comparative experimental measurement
for the learning and training of these networks, one com-
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Fig. 12. VMM+WTA classification of an acoustic dataset created using a series of 1s data inputs, identifying the presenceof a sound source, whether it be
a generator, truck, or car. The classifier used a 12x3 VMM classifier followed by a 3 input, 3 output WTA. Both on-chip training (training and classification
on the SoC FPAA) and off-chip training (training and classification numerically simulating SoC ODEs) using circuit models are shown for comparison. Both
cases used the same on-chip frequency decomposition of 12 overlapping bandpass (C4) filters, 12 amplitude detectors, and 12 low-pass filters (LPF, 50Hz
corner for spectrum representation). The data measurements were offset to show the input signal, the WTA output (top vector), and one WTA null (third
vector) on the same plot. These two approaches yield similarresults, and assuming a minimum time for any symbol of 40ms, the classifier correctly recognized
the results every time.

Classify # of IC Metric ADC On-IC

Energy(J) Bands Process Value ? Learn

This

Work 23µW 12 350nm 1nJ N/A Yes
[43] 16-20µJ 39 130nm 1.2µJ no no
[44] 124µJ 8 130nm 41.7µJ no no
[45] ≈ 11µJ 15 40nm 6.42µJ no no

Fig. 13. Comparison of time-dependent signal detection andclassification.
Every system is solving a similar problem, requiring a number frequency
decomposition bands. Acoustic classification≈ 1k classifications per second,
the closest number for continuous-time values, and the value used to inter-
polate where needed. The computation efficiency is consistent with general
digital neural classification engines [46] . For a digital implementation the
ADC is an essential part of the computation, although not included with our
examples. The analog approach does not require this additional step. Our IC
includes on-chip learning, a feature not discussed in otherimplementations.

pletely on-chip, and one where learning and classification is
performed off the FPAA for comparison. The input dataset
utilized a larger dataset composed of measured background
acoustic sounds and additional measurements of generators,
idle cars, and trucks in this environment. The input datasetwas
then composed of multiple 1s bursts of a generator, idle car,
or truck on a 110s background; constructing the dataset in this
way produces a labeled dataset. All learning and classification
occurred on this dataset passing through the same frequency
decomposition stage: 12 overlapping bandpass (C4) filters, 12
amplitude detectors, and 12 low-pass filters (LPF, 50Hz corner
for spectrum representation). The LPF function block also
provides a DC shift for the VMM+WTA blocks. The approach
shows a sensor-to-classified signal processing chain, unlike

most classification algorithms, including hardware based clas-
sification and training algorithms.

Figure 12 shows the measured results of a single epoch
after training converged. The network was trained to identify
the presence of a sound source, whether it be a generator,
truck, or car. One might use this representation to do further
classification, similar to identification of speech over noise.
The weights in Fig. 12 were the trained weights, one case
for computer based simulation of this computation, and one
case for on-chip learning of this computation. Two nulls (3-
input and 3-three output single WTA device) starting near the
classification the noise level after the first epoch.

Figure 12 shows measured results for a 12 input, 3 output
VMM+WTA comparing the difference between emulating
this structure on-chip, as well as implementing this classifier
off-chip. The off-chip computation was done in MATLAB,
experimentally modeling a subset of the analog functions; the
WTA block was modeled as amax(·) operation. Effectively,
the results are similar, although the on-chip weights have ad-
ditional offsets as expected from the training approach. These
two approaches yield similar results. The on-chip learning
method required additional offsets to be applied as expected by
the learning algorithm (no negative increments). Assuminga
minimum time for any symbol of 40ms, the classifier correctly
recognized every input correctly with no errors.

VI. D ISCUSSION ONVMM+WTA H ARDWARE

IMPLEMENTATION

A. Computation required for VMM + WTA learning classifier

The equivalent digital computation of this classifier, be-
tween the bandpass filter operation as well as the equivalent



12x8 VMM operating at a slow rate of 200SPS (for this
problem) is roughly 4MMAC (/s). A Multiply ACcumulate
(MAC) unit operating near the energy efficiency wall [26]
will take roughly 1mW of power, consistent with the similar
processing and energy requirements of digital hearing aid
devices. The resulting memory access is likely a factor of
2 to 8 larger than this computation [27]. Implementation on
an embedded processor, would require 250pJ/Op, typical of
low power processors, would require roughly 4-8mW for these
numeric computations. A typical ADC for this computation,
such as ADI7457[28], would require 1mW at 3.3V supply to
transform the resulting acoustic signal to the digital processor.
The required classifier levels (23µW) are significantly less
than the required, dedicated digital computation; these energy
requirements have been consistent across multiple acoustic
applications [2], [6], [7] as well as for this computation.

The computation and resulting learning removes the need
for more complex GMM type hardware [21], [20], [22],
including those cases built as part of machine learning ap-
proaches [22]. This classifier system, compiled on this FPAA,
is consistent with the x1000 improvement factor in compu-
tation (measured in MAC operations), is similar to systems
developed for VMMs (custom and compiled) [35], as well as
other custom classifier networks [1], [20], [22].

Figure 13 shows the comparison of this classifier with
digital classification equivalents for acoustic classification.
The resulting numbers are consistent with the 1000× energy
efficiency of analog computing versus digital approaches,
including the original analog VMM computational efficiency
[23] compared to the digital energy efficiency wall [26]. The
digital ICs are all custom implementations, where the analog
values come from a configurable SoC FPAA IC [2]. Classifi-
cation energy is the energy required for a single classification
step. The metric used is Classification Energy per frequency
band normalized to the IC Process (350nm CMOS). Scaling
for IC process is between linear to quadratic function; we
utilize the conservative view of linear scaling improvement on
energy efficiency for this table.

The power required during training for this implementation
is higher due to using only the digital processor for digital
updates. The feedforward classifier chain is below the typ-
ical 30µW of power required for classification. The digital
computation requires 12 input samples every 100µs during
training, as well as operations based on these values. Assuming
roughly 10-one clock op per data sample, the computation is
a 1MOp/s calculation, requiring roughly 2mW of power from
theµP [15]. These computations are not typically high-power,
but higher than the feedforward classifier chain. After learning
convergance, the processor can sleep (clock set≈ 0 0Hz).

B. Size of Classifier Implementations on SoC FPAA device

The section describes the maximum size of a neural network
that can be compiled on a single SoC FPAA device. A network
could be built as a single layer network, or as a combination of
layers; each VMM+WTA classifier is a universal approximator
for its input / output space. The maximum problem size
depends on the number of WTA stages and then on the

number of synapses and inputs. One can get between 1-
2 WTA stages per CAB, with 98 CABs on the IC. The
current implementation uses 16 inputs per CAB, although this
number can be increased significantly by using theC block
switches in addition to the local routing switches. Configurable
fabric can allow for sparse patterns, which could potentially
improve the computational complexity as in digital systems;
in this case, we look at fully connected local arrays to provide
one possible metric on this design. Conservatively (just 16
inputs per block), one could get roughly 200 WTA stages and
6000 synaptic (multiply + add) connections, operating from
bandwidths less than 1Hz to greater than 5MHz on this IC.
The VMM computation would be 30GMAC(/s) at 5MHz in
this case, requiring 3-6mW of power. One can extend these
approaches with multiple devices.

C. VMM + WTA learning classifier and other Classifiers

The learning algorithm running an epoch of the dataset after
each change of weights. Earlier hardware algorithms have
utilized this particular feature, including weight-perturbation
type algorithms [29], [30], [31], [32], [33]. These approaches
differ in using the signals to compute a weight update, typical
of SOM and VQ type maps, to explicitly minimizing these
errors for each step, resulting in typically few iterations.
These concepts superficially relate to earlier learning SOMin
hardware for 2 layer networks [34], although different training
and network structure. These structures would differ from only
programmed networks (e.g. [36], [37], [38]) or continuous on-
line learning [39], [40], [41], [42]

VII. SUMMARY ON VMM+WTA H ARDWARE

IMPLEMENTATION

This paper focused on the circuit aspects required for
an on-chip, on-line SoC FPAA learning for Vector-Matrix
Multiplier + Winner-Take-All (WTA) classifier structure. The
VMM+WTA classifier FPAA implementation, including tech-
niques required to handle device mismatch, set the founda-
tion for the learning efforts. Learning considerations started
by considering VMM+WTA as a two-input XOR classifier
structure. The approach requires considering the entire mixed-
mode system, including the analog classifier data path, control
circuitry for weight updates, and digital algorithm for com-
puting digital weight updates and resulting FG programming
during the algorithm. The approach was demonstrated on a
larger (12-input, 3-output) VMM+WTA classifier structure.
The SoC FPAA IC was not designed or optimized for these
classification, learning, or training tasks.

Unlike many machine learning applications, the SoC
FPAA approach enables going from sensor (e.g. microphone),
through the resulting analog preprocessing stages like fre-
quency decomposition, as well as the entire classifier and
learning structure. The on-chip embedded machine learning
algorithm requires using analog circuits for the classifier
data path, analog infrastructure for sensing computed values
into the µP computation, and resultingµP computation for
identifying learning updates as well as FG node updates.



This work, and resulting algorithmic modeling [3], are just
the beginning of what is possible using these embedded on-
chip, FPAA compilable algorithms. The on-chip classification
and learning open opportunities for many areas in embedded
computing, particularly sensor-input (e.g. acoustic, accelerom-
eter, image, and RF). Additional hardware and algorithmic
development enables wider use by applying these techniques
towards multiple focused classification problems.
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