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Abstract— Brain-machine interfaces have shown promising
results in providing control over assistive devices for paralyzed
patients. In this work we describe a BMI system using electrodes
implanted in the parietal lobe of a tetraplegic subject. Neural
data used for the decoding was recorded in five 3-minute blocks
during the same session. Within each block, the subject uses
motor imagery to control a cursor in a 2D center-out task. We
compare performance for four different algorithms: Kalman
filter, a two-layer Deep Neural Network (DNN), a Recurrent
Neural Network (RNN) with SimpleRNN unit cell (SimpleRNN),
and a RNN with Long-Short-Term Memory (LSTM) unit cell.
The decoders achieved Pearson Correlation Coefficients (ρ) of
0.48, 0.39, 0.77 and 0.75, respectively, in the Y-coordinate, and
0.24, 0.20, 0.46 and 0.47, respectively, in the X-coordinate.

I. INTRODUCTION

In the United States there are about 17,700 new cases
per year of Spinal Cord Injury (SCI) [1]. SCI results in
a partial or total loss of motor function. Brain-Machine
Interfaces (BMI) have the potential to increase independence
and improve quality of life in SCI patients by reading out
neural signals and mapping them onto control signals for
assistive devices [2]. There have also been efforts to use
BMI to directly control paralyzed muscles [3], [4] and to
decode speech signals from neural data [5], [6].

Data used in this work were recorded from the posterior
parietal cortex of a tetraplegic human research participant
[7]. Cells in this region have been shown to encode the
goal of movements [8] and are also involved in sensorimotor
integration and high-level motor planning [9]. These findings
suggest that neural signals recorded from the parietal lobe
could be useful for a variety of BMI tasks.

Figure 1 shows a general setup for a BMI system. Because
BMI systems serve as an interface between the cortex and
peripheral devices, they need to be robust over time in
the face of different sources of variability. For example,
electric potentials in the cortex have small amplitudes and are
susceptible to noise, and electrical and mechanical properties
of implanted microelectrodes change over time. Neuronal
populations may also change over time. Decoders should be
able to generalize across sources of variability to accurately
infer movement commands from changing neural signals.
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Fig. 1. General setup of a Brain-Machine Interface (BMI) system.
BMIs enable direct control of computers, prosthetics and other peripheral
devices by reading out and decoding brain activity. Advanced machine
learning paradigms such as neural networks may be capable of learning
the potentially complex relationship between recorded neural activity and
control signals for these peripheral devices.

Conventionally, the algorithms used for such a BMI
system have assumed a linear relation between inputs and
outputs (e.g., Kalman filters or Wiener filters) [10]. In
recent years, due to progress made in machine learning
and neural networks there has been an increased interest in
adopting these novel techniques for BMI applications [11],
[12]. In [11] Sussillo et al. implement a multiplicative RNN
for decoding movements from motor cortex of non-human
primates. Schwemmer et al. in [12] use neural networks
to perform multiple-class classification for several different
actions performed by a human subject. With sufficient train-
ing data, these powerful machine learning algorithms could
generalize over large variations in the recorded data.

In this work we compare the accuracy of both linear and
nonlinear decoders, including the Kalman filter, a two-layer
Deep Neural Network (DNN), a Recurrent Neural Network
(RNN) with SimpleRNN unit cell (SimpleRNN) [13], and
a RNN with Long-Short-Term Memory unit cell (LSTM)
[14]. We use Pearson Correlation Coeffiecient (ρ) as an
accuracy metric. The data used for training was recorded
from the parietal lobe of a tetraplegic subject while the
subject performed a 2D center-out task using motor imagery.
We report the accuracy of these decoders in open loop
configuration, i.e. where the subject uses motor imagery
while observing the task, but is not in the control loop.
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Fig. 2. System architecture for decoding neural signals into relevant kinematics. Broadband recorded data were bandpass filtered (250 Hz - 5 KHz)
and thresholded at −4 times the noise RMS. Threshold crossing timestamps were binned in nonoverlapping 50ms intervals and smoothed to estimate the
instantaneous threshold crossing rate. Decoding algorithms map these input features to corresponding X and Y coordinates of the cursor on screen.

II. ARCHITECTURE FOR THE BMI SYSTEM AND
METHODS

A. Subject, Implanted Electrodes and Recording

As part of an FDA- and IRB-approved study, two 96-
channel Utah microelectrode arrays (Blackrock Microsys-
tems, Inc., Salt Lake City, UT, USA) were implanted in the
posterior parietal cortex of a 32-year-old tetraplegic subject
with spinal cord lesions at C5-C6: one on the medial bank
of the anterior intraparietal sulcus (AIP), and a second in
Brodmann’s area 5 (BA5) [7] (Figure 2). Data were recorded
at 30,000 samples/sec.

B. Preprocessing the Neural Data

Figure 2 shows a top level block diagram of a BMI system.
Broadband data were filtered (Butterworth filter, 250 Hz - 5
KHz) and thresholded at −4 times the noise RMS of each
channel to identify neuronal action potentials. These spiking
events were binned at 50 ms intervals and smoothed to create
spike train features for the decoding algorithms. To match the
online case as closely as possible, action potential waveforms
were not sorted, and spike trains were computed from the
raw threshold crossings.The spikes recorded from both the
electrodes were processed as described above and used as
features for the decoder.

C. Center-Out Reaching Task

In this work we use neural and behavioral data collected
during the open-loop phase of a 2D center-out brain-control
task. In this phase of the task, a cursor moves under com-
puter control, with a minimum-jerk velocity profile, from
the center of a computer screen to one of eight different
target locations arranged uniformly around a unit circle,
while the subject uses motor imagery to imagine controlling
the cursor. Data is collected in three-minute blocks, each
block consisting of 53 trials, with a pseudorandom uniform
distribution of targets across trials. The dataset underlying
this work consists of five such blocks recorded on the same
day.

III. ALGORITHMS AND RESULTS

We used this data to compare decoding performance
between a Kalman filter, DNN, SimpleRNN, LSTM. LSTM
and SimpleRNN algorithms are used for this work since
the prediction task and the input neural data are sequential.
The data were divided into training (80%), validation (10%)
and test sets (10%). Training data was normalized to have
zero mean and standard deviation of one to improve training
algorithm convergence but test and validation data were
normalized using scales learned from the training data. Time
bins in which the cursor did not move (zero velocity) were
excluded from analysis. In the case of the neural networks,
separate decoders were trained for predicting X and Y
coordinates (Figure 3(a)).

The standard Kalman filter uses a model of the kinematic
system, and a linear model of the relationship between the
kinematics and the neural data, to form new estimates of
the kinematics from noisy measurements of neural data [10].
Variants of the Kalman filter support nonlinear dynamics, but
in general, Kalman filters require the researcher to establish a
model of the dynamical system. In contrast, neural networks
learn the model from training data.

We used two different neural network paradigms: DNN
and RNN. A DNN is a feedforward network with multiple
layers and several nodes at each layer. The output of each
node has a nonlinear activation function. DNNs with two
layers have been shown to be a universal approximator [15].
A RNN is composed of feedforward network as well as
a feedback network, meaning that all previous outputs are
integrated to predict the next time-step (Figure 3(b)). RNNs
also use previous time steps’ input data when computing a
new prediction. We tested two variants of RNN: one with
LSTM unit cell [14] and one with the SimpleRNN unit cell
[13].

A. Training and Accuracy of the Decoders

The neural networks were trained using Keras with ten-
sorflow backend, and incorporate L1 regularization and 35%
dropout for both the kernel and biases to reduce overfitting.
An rmsprop optimizer was used for training the network
[13]. All three neural networks use the hyperbolic tangent
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Fig. 3. Output of the decoding algorithm. (a) For the neural network algorithms, two separate decoders are used to predict X and Y position of the cursor.
(b) A block diagram of RNN [13] with a single dense layer for regression. Also, an unrolled block diagram of RNN with multiple time-steps. The RNN
unit can be either a fully connected SimpleRNN cell or an LSTM unit cell.

TABLE I
PARAMETERS FOR THE NEURAL NETWORKS

Nodes Layers Previous Activation
Neural bins function

LSTM 10(X), 50(Y) LSTM+NN 40 tanh
RNN 25(X), 25(Y) SimpleRNN+NN 20 tanh
DNN 25(X), 25(Y) NN+NN 1 tanh

as an activation function, and incorporate a dense layer with
one node and a linear activation function at the output to
perform regression. Network parameters were heuristically
tuned; future studies will explore optimization techniques
to tune these parameters for higher accuracy. In general,
optimization techniques such as Bayesian optimization, grid
search, random search etc. are used to choose optimal
network parameters. The number of layers and nodes used
for decoding were nominal to avoid overfitting, but with a
larger dataset one could increase the size of the network to
predict with consistent accuracy.

Table I summarizes the parameters used for training these
neural networks. The DNN had two layers with the first layer
of the DNN composed of 25 nodes. The LSTM network
for X position was set to 10 nodes with 40 time-steps of
prior neural data, and the Y position was set to 50 nodes
with 40 time-steps. The SimpleRNN network used 25 nodes
and 20 time-steps of previous neural data for both X and Y
coordinates.

Table II shows the accuracy of the four different decoders.
The RNN algorithms, with the ability to incorporate histor-
ical data to compute new predictions, achieved the highest
performance. The DNN exhibited the lowest performance,
likely because it uses only a single time step of neural data to
predict the current kinematics. The Kalman filter performed
better than the DNN, perhaps also because its iterative nature
inherently captures prior state information to predict new
states. Figure 4(a) and Figure 4(b) show the predicted X and
Y coordinates of the cursor for the LSTM unit cell with a ρ

TABLE II
PEARSON CORRELATION COEFFICIENT ρ FOR EACH DECODER

Kalman Filter DNN SimpleRNN LSTM
X 0.24 0.20 0.46 0.47
Y 0.48 0.39 0.77 0.75

of 0.47 and 0.75 respectively, and figure 4(c) and figure 4(d)
show the predicted X and Y coordinates of the cursor with
a ρ of 0.46 and 0.77.

IV. DISCUSSION

In this work we evaluate the performance of several
different neural networks, and compare their performance
to a standard Kalman filter. Algorithms with the ability to
incorporate historical data and network state demonstrated
the highest performance (LSTM and SimpleRNN with the
highest accuracies, and the Kalman filter with the next
highest performance). LSTM also has the ability to recognize
long-term dependencies in the data. Network paradigms
with interconnected nodes and integration of historical data
and states, such as the RNN variants tested in this work,
may prove critical to first capturing the complexities of the
relationship between neural activity and kinematic output,
and second providing stable performance for BMI users.

Our results showed a large difference in performance be-
tween X- and Y-dimension kinematics. These differences are
most likely attributable to the specific neuronal population
recorded for the data used in this work, which may comprise
different proportions of neurons modulated by movement in
either axis. It is also possible that the research participant’s
cognitive strategy led to these differences. Further data must
be collected to understand the source of these differences.

Future work will test RNN decoders in closed loop to
evaluate how well a human subject can use them for cursor
control. Stability of the decoder over multiple days will also
be evaluated. Also, this will determine whether the capability
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Fig. 4. (a) Output of a RNN with LSTM unit cell predicting the X coordinates of the cursor (ρ = 0.47). (b) Output of a RNN with LSTM unit
cell predicting the Y coordinates of the cursor (ρ = 0.75). (c) Output of the decoder with SimpleRNN unit cell predicting X-coordinates of the cursor
(ρ = 0.46). (d) Output of a RNN with SimpleRNN unit cell predicting the Y coordinates of the cursor (ρ = 0.77).

of the LSTM to capture long-term dependency leads to better
performance over time.

While these algorithms are powerful in their capacity to
capture complex relationships, they currently require power-
hungry computational resources to operate. Part of making
BMI systems clinically relevant is to design and develop
size- and power-efficient hardware for decoding kinematics
such that these systems can be implanted or worn on the
body. Future directions would involve exploring such novel
algorithms and energy-efficient hardware.
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